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This report presents the analyses of longitudinal resonan

rt

ducer configurations applicable to squeeze-film bearings. The transducer consists
of a driving section and a driven extension on which the squeeze-film bearing is
mounted. The extended section of the transducer is designed to provide amplifica-
tion of excursions of the driving section. Three preliminary design configurations
are proposed in this report as shown schematically in Figures 1, 2 and 3. Both a
general analysis and 2 simplified approach are presented; design data are provided

for each design configuration.



1. INTRODUCTION

In a squeeze-film bearing, the transducer converts the electrical input into a
mechanical motion. 1In order to obtain the largest possible motion with a minimum
power consumption, the transducer should be operated at resonance. While large
motion of the transducer is desirable to achieve large load capacity of the
squeeze-film bearing (refs. 1, 4 and 5), suspension of the transducer from its
housing becomes a real problem. If rigid mounting of the transducer is to be
made, the point of attachment to the transducer must be a node of its resonant
mode. This requirement causes a bit of difficulty in the transducer-bearing
configuration design. One satisfactory concept, which provides both radial and
axial support of a float, is shown in Fig. 12. 1In this arrangement, the trans-
ducer would be operated at its longitudinal mode. Since the mid-plane is a
natural node, it is a convenient location for the mounting flange. Conical (or
spherical) bearing can support load in either direction even though the longitud-
inal transducer only provides axial squeeze-motion. However, the effective squeeze
motion is reduced because only the component of the motion perpendicular to the
bearing surface affects the gap. Thus it is even more important that the squeeze

motion at the bearing be as large as possible.

Feasibility of achieving increased squeeze motion by elastically coupling the
bearing element to the driven section of the transducer will be the main purpose

of this study.

An analysis is presented for the lowest normal mode of longitudinal axial-excur-
sion transducers applicable to squeeze-film bearings. Three preliminary design
configurations, shown schematically in Figs. 1, 2 and 3, are considered. It can
be seen from those figures that each design consists of a driving section and a
driven extension on which the squeeze-film bearing is mounted. The extended
section of the transducer is designed to provide amplification of excursions of

the driving section.

In Section 2, a thorough analysis is presented for each design configuration.
Results are obtained in a form that allows numerical computations to be carried

out easily. Section 3 offers a simplified analysis which brings out the major



controlling parameters and their effects. The relationships of the natural
frequency of the system and of the amplitude of excursions of the squeeze-film
bearing, as a function of the controlling parameters, are explicitly obtained.
These relations are then presented in the form of design charts. A design

procedure is suggested and examples are given at the end of Section 4.



2. GENERAL ANALYSIS

The configurations of the axial-excursion transducer are schematically illustrated
in Figures 1, 2 and 3. These will be designated as configurations "A", "B'" and

"'C", respectively.

2.1 Configuration "A"

In Configuration “A"™ (Figure 1) the center section of the transducer, made of
piezoelectric ceramic core -and metallic shells, is the driver. The piezo-
electric core and .the metallic shells are bonded .together. - In order to avoid

thermal stresses at elevated temperatures, a specific metal was chosen that has

a thermal coefficient of expansion matching that of the piezoelectric. Typical
examples are wmolybdenum or Invar {42% Ni and 58% Fe) to match PZT-4 (Ref. 1)

We choose the x*-coordinate to be the distance from the central plane. We also
assume a one-dimensional model for analysis — "x*'" is the only space coordinate
required to describe the system. Thus, the configuration "A" may be visualized
as its mechanical equivalent shown in Figure la. Note that the end flexure, having
a mass much smaller than that of the bearing, is considered as a spring with spring

constant k.

The equation of motion of longitudinal vibrations of an elastic rod is well-known
(see e.g., Ref. 2). This will be applied to the composite circular cylinders in

the central driving section (0 < x* < &f).

2% 2 x 2
AE —-———‘3“2+Ax-:——-—°“2= (p A +pA)au2 (1)
c C ax* mmax* (o] m m at*

where u* is the local displacement, and A, E and p, respectively, denote area,
Young's modulus and density. The symbols m and c indicate metal and ceramic
respectively. It is to be emphasized here that Am is the total cross-sectional

area of the metallic shells. Equation (1) can be reduced to

_El Bzu* - azu*
Pl ox? dr?

0 < x* < al 2)



if we define

©
I

(p A, + omAm)/Al

1
El = (ECAC + EmAm)/Al 3)
A, = Ac + A

Similarly we obtaih

E 2 4 2 .
2 Fo | 2o Qf < x* < 2 )
P2 ox* ot*
where v* is the displacement and E2 = Em, p2 =P . And we have the following
boundary conditions,
The central plane is fixed in space: u* =0
x*=1
Compatibility: uﬁx = v
*=x b F=l
ou* ov* : :
- = A AN 5
Force balance: A1E1~§;; A2E2 e (5)
2
ov* Ts d%y*x
: - - * Cwk) = =
Force balance: A2E2 SF k(v oW ) 2 2
x*=4 ot* _
x*:ﬂ x*—

The equation of motion of the bearing can be written as

. ok _ Dsy Sk ©
-k(w* - v e ) = Gmb+ 3 ) at*z

Here we have assumed that the end flexure is equivalent to a spring with spring
m
. . 5 .
constant k, and its mass, m, is lumped into two points, i.e., 5~ is attached tc the
bearing, and the other half is attached to location x*=£. Justification of the

validity of this assumption as well as a formula for k may be found in Appendix I.



If we define the following dimensionless variables,

- X
x =7
t = ot*
*
o = &) 7
- y*
vV T 72
*
w=yz')

then, the above equations become

El azu
2.2 _-5 = U 0<x<a (8)
o £ Py ox
E 2
2 9y _ a<x<1 (9)
2,2 2
o LD ox
2
u(0,t) = 0 (10)
u(a,t) = v(a,t) (11)
A E
11
A_E m 2
_ 212 avgi,t) _ k[v(l,t) _ w] _ _zimZ o) VS;,C! (13)
ot
- k[w - v(1 t)] = ( + 28 & du (14)
’ ™ T2 3¢2
To obtain the solutions of Eqs. (8) and (9), we assume that
u(x,t) = U(x) exp(it) (15)
v(x,t) = V(x) exp(it) (16)

Then, by using Eq. 10, it is a simple matter to obtain

/p
Ux) = C1 sin(wL i—ll" x) = Cl sin(%(?;—l x) (17)



- . \ /..l - = P B S
and V(x) C2 sin [cnz Ez (x xo)] C2 sin [2 o, (x xo)] (18)
where = = '—El |
[ 1 24 pl

(19)
2 2£ Py

CI and 02 are amplitudes of excursions; o, and mz are characteristic frequencies
of the respective section; and X, is a phase angle to be determined from the

boundary conditions.

Using Eqs. (11) through (14), we get

(L g D
F_Z = 51n(2am1 (20)
C . [n o -
1 s:Ln[2 ‘Q-)—(G-xo)]
2
_ 1l + wl T ® 1T @
p = =2 1 (o cot[-——(a- x ) (21)
E w 2 2 o o
_£+7 2 1 2
E
m
C A E
3. 22 10 _ [ra ® .27 . [re@
. T Tk 2o cos[2 o (1-x°]+ [1 - (g) ] 51n[2 o (1 xo)] (22)
2 2 2 s 2
C
3 @,21 _ o [ro
and c, [1 - (“%) ] = 51n[2 o, (l-xo] (23)
k
where (DS = —
s
_ k
V™
" T 2
(24)
B = 44,

¥ = Am/ Ac



and C3 is the amplitude of excursions of the bearing, i.e.,

w = C3 exp(it) (25)

From Eqs. (20) through (23) we have four equations with four unknowns (providing
that the dimensions and the material constants are all given): C2/C1, ®, X and
C3/Cl’ Due to the form of Eqs. (20) through (23), it is convenient to start the
calculation from a given value of w. Consequently, one of the input data,

preferably Ay or my, must be kept floating. The procedure for numerical calcula-

tion is as follows:

Input Data

L, @, v, materials constants, AZ’ m and dimensions of the flexure. Note
that Al is not given.

a) Assume a value of o.

b) Calculate El’ P>
c) Eliminate C3/C2 from Eqs. (22) and (23) to obtain

u)l, w, , a)s, cnb and k.

2E2 T ® 1 @ (u‘. 2 (u) 2 -1
e 5 o C°tn [*- — (1-x )] + [l - =) ] = [1 - (=) ] (26)
k 2 cuz 2 o, o @ } @

From Eq. (26), the value of x _ may be solved numerically.
d) Calculate CZ/C1 and B (= Al/AZ) from Eqs. (20) and (21) respectively.

Here, A, has been chosen to replace @ as an unknown quantity as indicated

1
before.

e) Calculate the amplitude amplification factor from

in 2@

C3 _ CD 21-1 i sin [2 >, (1 xo)]

= |1-C¢=-) (27)

Clsin(lzt'% Q) “ sin ['g' L. (a-x )]
1 © °

Note that B may turn out to be an exceedingly large number or even a

negative number. The latter is physically unrealistic as B, defined as

the area ratio, Al/AZ, must be positive. It is then necessary to assume

a new value of k or m, until a reasonable and desired combination of 8

and C, / [C sin(g-gL a)] is reached. If several sets of values of B
3 1 2(1)1



and amplitude amplification are obtained, the criterion should be that
the strain level at the central plane be as small as possible. The

strain can be expressed as

- Qu¥ _ 1o T W iot*
€ = 35F ¢l %0 cos(2 . x) e (28)
1 1
- Qu* - 1o
and €, dx* = C1 2‘01 (28a)
x*F=t¥*=0
Hence, we add
f) Calculate and maximize
T
c -1 27-1 sin[—'—- (1-x ﬂ
@ w: (o}
— (g—:— [1 - (Euw_) ] sin g"% a) ri mZ q (29)
o 1 L b J 1 81n|.§;; (a-xo)J

2.2 Configuration "“B"

In Configuration ""B" (Figure 2), there is no end flexure as compared to Configura-
tion "A"™ (Figure 1). The area of the extended section, AZ’ is reduced by cutting
slots and/or reducing the thickness of the shells. The reduction of A2 will
obviously decrease the rigidity of the extended section; this, in turn, is ex-

pected to result in amplification in the excursions of the bearing.

It is not difficult to see that the analysis for Configuration "'A" is applicable
to this case, except that the boundary conditions at x = 1 (Eq. (13) and Eq. (14)

are replaced by

A% v | 290 (309
£ ox b S 2
t
which may readily be simplified to
nA E
T w 2 2
tan |- — (1-x )] = (30a)
[2 o, o ZmUDabE




Then the procedure for numerical computation is as follows:

Input Data: £, @, y, material constants, A2 and m, .

a) Assume a value of w.

b) Solve Eq. (30a) for X .

c) Compute B from Eq. (21).

d) Calculate the amplitude ratio

. W il =L (12
Iv(e . t) | _ C2 %1n 3 07 (1 xoﬂ ) 51n[2 @7 (1 xo)] 31
lu@e,0)1 c, sin( v) sin[g = (a-x ﬂ
1 2 2 Wy o
[ .o
ang ¥ s“‘[z ®2 (1"‘0)] sin G V)
Q€ i w ‘. i
o s1nl2 o5 (a—xon 5V

where v = @ %—1-
e) Adjust m until a reasonable and desired combination of B and amplitude

ratio is obtained.

It is noted that in order to achieve a high amplitude ratio, x_should be close
to @. Then, the last factor in Eq. (21), cot[§~%§ (a—xo)], and consequently B

becomes very large. This indicates that heavy driving section is required.
For @ = 1, there is the special case that amplification of the transducer motion
is due to mass loading effect alone. This will be further discussed in Section

3.2.

2.3 Configuration "C"

In Fig. 3, Configuration "C" is shown to have the same basic features as the
Configuration "A", although there is only one metallic shell sandwiched by two
piezoelectric shells. The end flexures are again provided to amplify the excursion
amplitude of the squeeze-film bearing. The analysis for Configuration "A" still
applies here if the symbols are properly identified; e.g., Ac and Am represent

respectively the cross-sectional area of the ceramic and the metal in the driving
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section. Their values should be calculated from the geometry of the corresponding
design configuration. Note that k should be computed by Eq. (I-8) instead of
(I-7) — Appendix I.
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3. SIMPLIFIED ANALYSIS

In this chapter a simplified analysis is performed on the results derived in

Section 2.

3.1 Configurations "A" and ''C"

Since one of the major purposes of the transducer is to provide a relatively

high amplitude amplification, C3 , it is seen from Eq. (27) that @ must
~ . ! @ a)
L1s1n(2 o7

be close to . Also, Eq. (24) indicates that

® >> w =~ (33)

since m, is much larger than m_. Eq. (26) is then reduced to

A_E -1
22 1w W _ w 2
i 2 ctn[z o (1—xo)] = -1 +[1 - (‘;b) ]
or
AE 21°1
259 w
I(l-x) "L+ [1 - (::b) ] 34)

where x = 1 and we have used the approximation

&) - (55 0] o2

ctn[
2 2

N R

We may further assume that & 2 1, i.e., we do not need a "long" extended section

which merely serves as a connection between the driving section and the end flexure.

Thus,
x =a=1 (36)
o

and Eq. (21) can be written as

A1El wl T -1 n
—_— = — [—-—— (a-x )] tan (5 V) 37
A2E2 cn2 20.)2 o 2

where v = ¢ -C-al;—

1
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Combining Eqs. (34) and (37), we obtain

AE, o o/
‘;j( (}—kl)(_—b) ctn (% v) = ——ﬂ-’—z‘ (38)
| 1-Qnﬁnb)

Also, Eqs. (27) and (29) may be approximated as

c 219-1
o )

Clsin(lzt‘ v) ©p
and
C 2 -1
3 _ ;N1 LT O
Ge_ = (2 V) s:.n(2 v) [1 - (mb) ] (40)

Rearrangement of Eqs. (38), (39) and (40) yields, respectively

n
A E, _ (Alpla'“mb) tan (-2— V) 8
kxf K _\2 B T a)
Qv 2"
C ct:n(E V) A .p.od
: 3ﬂ - - 2 ( 171 ) (39a)
C151n(7 V) 2 Y %
and
C3 _ cos(g' V) Alplal
e - 2 § ) (40a)
o (E V) "

Eqs. (38a), (39a) and (40a) are plotted in the form of design charts (Section 4).

3.2 Configuration "'B"

For the general case that @ < 1, it is recommended that one use the procedures
suggested in Section 2.2. 1In this section we shall present the special case of
a =1, i.e., there is no extended section; the squeeze-film bearing is directly

mounted at the end of the driver.
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The boundary condition at x* = £ is

A1E1 ou(l,t) _ 2 azugl,tz
- A Av - mbd) 2 (4 1)
- b ot

On using Eq. (17), we obtain

b1 AlEl

T w
2 mblm ml 2 @

Thus, by rearranging terms, we have for @ = 1 the simple equation

A p L
171 T W T W
= = — — = 42
m,_ 2 w, tan (2 “’1) (422)
and
C
3 u(l,t)
€ _ du

(43)
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4. DESIGN DATA, PROCEDURES AND ILLUSTRATIVE EXAMPLES

The design charts for Configurations “A" and "C", generated from Equations (38a),
(39a) and (40a) are presented in Figures 4, 5 and 6. Fégures 4 and 5 are cross-
plotted to give Fig. 7 which shows lines of constant az;. Figure 6 is a plot of
amplitude amplification versus dimensionless mass ratio with v as parameter. In

the next section we shall illustrate the design procedure by an example.

Design Procedure for Configurations "AY and '"C"

Example
Input Data
A1 = 2 in2
£ = 3/4 in
y = 0.1
Use molybdenum and PZI-4.
Em = 47 x 106 psi
p = 0.355 1b/cu.in
" 6
Ec = 12.9 x 10 psi
Dc = (.271 1b/cu.in
Ec + 7Em 6
a. Compute E1 = ——1;;——— = 16 x 10 psi
P+ 7P
= & o _ .
Py = + 0.278 1b/cu.in
E
. 0\ /L _ T ‘\/i6x10 x 144
@ 2t Vo, 2x0.75/12 VY 0.278x123/32.2
5
= 3.12 x 10° rad/sec
b. Assume o = 0.94
and @ = 1.33x105 rad/sec,
- @©
Then v = am 0.4

1



c. Assume k = 1.28x108
A_E
171 _
Then Z - 4.25
d. Read from Figure 4
A p.ab
B S
m,
m = 5.7x107°

1b/ft

slug

e. Read from Figure 7

C3 _

csinv)
150G

f. Read from Figure 5

8

The value of k = 1.28x10" 1b/ft in (d) is not difficult to achieve inasmuch as
the spring constant k given by Eq. (I.7) or (I.8) for Configuration "A" or "C"
From éb), (e) and (f), o=
= 4.6 and —— = 4.4, these

Qe

can yield a wide range of values by various designs.

:1-33X31.05 rad/sec = 21.2 k.c./sec

values are likely to satisfy the need of a squeeze-film bearing.
3 slug = 0.183 1b.)

are not satisfactory. One should then start a new calculation by assuming, e.g.,

these values together with the bearing mass (mb

a ne
w value of v or o L

The above calculations yield all the design information except the value of A2.

The area A, as seen in Figure 1 or 3 is the total cross-sectional area of the

2

short stubs. Physically, A, is not a dominant factor forthe transducer because

2

the short stubs serve only as a connection to link the driving section and

the flexure and the squeeze-film bearing.

1

c sin(%‘ v)

I1f, however,

Thus, it is not surprising that AZ

-15-



-16-

in the simplified analysis, no longer appears. The value of A2 can only be

obtained from the general analysis.

We continue the above example by following the procedure suggested in Section 2.1

in the general analysis. By so doing we obtain

a. A2

b. A check of accuracy of the simplified analysis.

Input Data

a = 0.9%
L = 3/4 in
y = 0.1

Use molybdenum and PZT-4.

a. Compute . E1 = 16x106 psi
Py = 0.278 1lb/cu.in
® = 3.12 X'IO§Jrad/sec
b. Assume ® = 1.33 xle? rad/sec
Thus v = cx%l- = 0.4

c. Assume for the time being a value of A2 = 0.25 in2 instead of a value of

Al. We shall later compute A, from Eq. (21).

d. From k = 1.28x108 1b/ft, we can design the flexure as:

Configuration "A"

N = 32 = number of beams in each metallic shell.
D = 2%-in

b 0.0625 in

h 0.0374 in

R . I .
. RS o "'l::, — i
< o Tn 4
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which results in
3.4

192 E2 bh™N

12(7rD)3

k = 2

1.067x10’ 1b/in (1-7)
1.28x10%  1b/ft

e. Assume m = 5.7x10_3 slug
From Eq. (26) we find

X = 0.554
o

f. Compute B from Eq. (21)

A1

L
g = — = 11.73
A2
= , 2
Al = 0.25 x 11.73 = 2.93 in
g. Compute
C
_.__.3_’[_. = 6.8
0151n(§V)

h. Run the calculation for different values of mb from 4.5x10-3 to 6.5x10-3

slug.

i. Repeat the above calculations for A2 = 0.125 in2 which is one-half of

the previous assumed value.

The results are plotted in Figures 8 and 9. It is seen from Figure 8 (A2 = 0.25)
that for Al =2 inz, m should be 5.3x10-3 slug, and the amplitude amplification
is approximately 5.0. From Figure 9 (A2 = 0.125 in2) for A1 =2 inz, W, should

be 5.13x10-3 slug and the amplitude amplification is again approximately 5.0.
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The above results indicate that:

a. A2 is indeed unimportant.

b. The simplified analysis yields an m_ whose value is about 10 percent

o)

o

higher than that of the general analysis.

However, if one insists on m_ = 5.7x10_3 slug and chooses A, = 0.25 inz, then the

b 2
natural frequency, ®, of the system will be changed. The graphs in Figure 10 show

that, at A, = 2 inz, o= 1.28x105 rad/sec, and the amplitude amplification is 4.8.

1
The natural frequency is only about 4 percent off the value 1,33x105 rad/sec;
and the amplitude amplification is about 4.5 percent off the value 4.6. Hence,

we conclude that the simplified analysis is a good approximation.

Design Procedure for Configuration "B'"

It is seen from Eq. (32) that in order to have a relatively high amplitude ampli-

fication, @ should not be close to unity.

Example
Input Data
a = 0.6
£ = 3/4 in
y = 0.1
A, = 0.25 in2
2 .

6.0x10-3 slug

U_E

Use molybdenum and PZT-4.
= _ 6 .
E2 = Em 47x10° psi
6 .
a. Calculate E1 = 16x10 psi
pl = (0.278 lb/cu.in
ml = 3.12 x 105 rad/sec.
b. Assume @ = 2.07x105 rad/sec = 33 k.c./sec
Thus v = QL'a = 0.4
1\

1



c. From Eq. (30a) we find

x = 0.276
o

d. From Eq. (21) we calculate

A
!
2

B

1.85 in2

o
il

e. From Egs. (31) and (32), we obtain

AL s
2(Qf, £) .
and —%—ﬁ—*—t)— = 2.2 —-‘1%—9— = 1.33
o (o]

£f. Repeat the above calculations for different values of m - The results

are plotted in Figure 11. It is then seen that for A1 = 2 in2

v(£,t) = 2.6
u(ad, t) )
and ——"—é—"iz—g—— = 2.35 —-‘-’-g-’—t)— = 1.41
e} (o]

From the above examples we make the following comparison:

-19-

C C
Configuration A%(in) Q ®(k.c./sec) mb(slug) u(l,t) ——-—3—;— 6—3 Y
ClsinC—V) o
2
MAY oy NCH 2 0.94 21.2 5.7x1()“3 Clsin(%V) 4.6 4.14 0.4
nge 2 0.60 33 6.2x10"> Clsin('g‘v) 2.6 1.41 0.4

It is seen from the above table that for the same size driver and the same dis-
placement at x = Q, Configuration "A" provides larger excursion amplitude for

the squeeze-film bearing than Configuration "'B".



5. CONCLUSIONS

The axial-excursion transducer of a squeeze-film bearing was studied analytically.
Both a general analysis and a simplified analysis are presented. The results of
the simplified analysis for Configurations "A" and "C" have been plotted in the
form of design charts. An example is given in Section 4, which illustrates the
procedures for using the design charts. The same problem was reworked by using
the general analysis and the results were found to be very close to those obtained
from the design charts. For Configuration "B", a design procedure is suggested
in Section 2.2. It was found that, in general, Configurations "A" and "C" with
a properly designed end flexure do provide larger amplitude amplifications than
Configuration "B"; also, for each corresponding design configuration larger ampli-

tude amplification can be achieved by increasing the size of the driving section.

Thus, increased excursion amplitude can be obtained at the expense of increase
configuration complexity. In the assending order of achievable excursion

amplitude, the rankings of the considered configurations are:

1. Configuration "B" without the extended section (@ = 1).
2. Configuration "B" with an extended section (@ < '1).
3. Configuration "A"
4. Configuration "C".
Further increase of the excursion amplitude can only be achieved by providing a

larger driving section for Configuration "A" or "C".
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APPENDIX I - FLEXURE CALCULATION

Each unit cell of the flexure in Fig. 1
may be visualized as a beam structure.

Because of symmetry, the deflection curve

N

A .‘_.W/Z at the supporting points (A and B in
— h -1 Fig. I-1) has a zero slope. Consequently
W—" L the beam may be considered to have both
f+’—} l ends built in as shown in Fig. I-2 (left).
W
B -~ When the beam is vibrating, a typical
N
iﬂ-—i—b deflection curve at a particular instant
-—|h|-| would appear as indicated by the dotted
line in Fig. I-2. Were we to lump half
Figure I-1.

of the beam mass (M/2) at the center and
to attach M/4 to each end point A and B,
we would obtain an approximate formula

for the natural frequency of the beam

[ W/d
Dy eam _V AM I-1

where & = deflection at the center of

Figure I-2. the beam.

From Reference 3, we have

3
= AL -
® = T2 Ex (1-2)
Substitution of Eq. (I-2) into Eq. (I-1)

results in

- [ EL -
o 19.6 ML3 (1-3)
An exact formula in Reference 2 (p. 61-69) shows that the frequency of the lowest

mode is

)y _ 2 / ELI _ / E1
wbeam = (4.739) m3 - 22.4 (3 (1-4)




Although the discrepancy between the approximate and

-23-

the exact formulae is about

12 percent, the result will be greatly improved if we bring the mass of the

squeeze-film bearing into the picture. The bearing mass is estimated roughly at

10 times heavier than that of the sum of the masses

of all the beams.

We will now obtain a spring constant, k, for the flexure which is by definition

- P
k =3

where P is the total force acting on the flexure and

P = 2 NW for Configuration "A"
= NW for Configuration "'C"
N denotes the number of beams in each shell and the

of Eq. (I-6) represents that there are two metallic

(1-5)

(1-6)

factor of 2 in the first part

shells in Configuration "A".

Combining Eqs. (I-2), (I-5) and (I-6) and using the relatiomnships L = -%? and
1 3 . I
I 12 bh™, we obtain
192 EZN4 bh3/12
: . M _
2 (xD0)3 for Configuration "A (1-7)
k = 192 EZN4 bh3/12
for Configuration "C" (I-8)

(sD)>
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t*

u,v,w

u,v

Subscripts

Superscripts

area

width of the beam cross-section
defined in Eqs. (17), (18) and (25)
diameter

Young's modulus

height of the beam cross-section
moment of inertia

equivalent spring constant

length of the transducer from the central plane (Fig. 1)
mass

number of beams per cylindrical shell
total force on end flexure

time

wt#*, dimensionless time
dimensionless displacements
amplitudes of displacements
dimensionless coordinate

a phase angle defined in Eq. (18)
ratio of the length of the driving section to the total length (Fig. 1)
A /A,

Am/Ac

deflection

w

@
density

frequency

ceramic

metal

spring

bearing

driving section, 0 < x < &
extended section, a<x<1

bearing

dimensional quantities




